\(P,Q,R,\) and \(S\) are four coplaner points that lie on the sides \(\overline{AB},\overline{BC},\overline{CD},\) and \(\overline{DA},\) respectively, of a skew quadrilateral. Then what is \(\frac { \lvert\overline{AP}\rvert }{ \lvert\overline{PB}\rvert } \cdot \frac { \lvert\overline{BQ}\rvert }{ \lvert\overline{QC}\rvert } \cdot \frac { \lvert\overline{CR}\rvert }{ \lvert\overline{RD}\rvert } \cdot \frac { \lvert\overline{DS}\rvert }{ \lvert\overline{SA}\rvert }?\)

×

Problem Loading...

Note Loading...

Set Loading...