Smooth

Algebra Level 5

We define a positive integer \(n\) to be smooth if there exist a representation of real numbers \(a_1,a_2,\ldots,a_{2n}\) such that \(2n = a_1+a_2+\ldots+a_{2n} = a_1 \times a_2 \times \ldots \times a_{2n} \). Find the sum of first 2015 smallest smooth number.

×

Problem Loading...

Note Loading...

Set Loading...