Forgot password? New user? Sign up
Existing user? Log in
f(n)=∑r=0n(−1)n−r(nr)rn \large f(n) = \sum_{r=0}^{n} (-1)^{n-r} \dbinom{n}{r} r^n f(n)=r=0∑n(−1)n−r(rn)rn
Find the closed form of limn→∞f(n)n!\displaystyle \lim_{n \to \infty} \dfrac{f(n)}{n!}n→∞limn!f(n).
Give your answer to 2 decimal places.
Problem Loading...
Note Loading...
Set Loading...