$\begin{aligned} &\left( 1 + \dfrac12 + \dfrac14 + \dfrac18 + \cdots\right) \times\left( 1 + \dfrac13 + \dfrac19 + \dfrac1{27} + \cdots \right) \\\\ &\times \left( 1 + \dfrac14 + \dfrac1{16} + \dfrac1{64} + \cdots \right)\times \cdots \times\left( 1 + \dfrac1n + \dfrac1{n^2} + \cdots \right) \end{aligned}$

The expression above represents the product of infinite geometric progression sums.

Simplify this expression.

×

Problem Loading...

Note Loading...

Set Loading...