So many sins in this sineful problem !!!!!

Geometry Level pending

If \(a,b,c∈(0,π)\) and \(a+b+c=π\) ,

Then, Find the value of

\[ \begin{align} &\sin(b).\sin(c).\sin(b−c)(\sin^2(b)+\sin^2(c)+\sin^2(b−c))+ \\ &\sin(c).\sin(a)\sin(c−a)(\sin^2(c)+\sin^2(a)+\sin^2(c−a))+ \\ &\sin(a).\sin(b).\sin(a−b)(\sin^2(a)+\sin^2(b)+ \sin^2(a−b))+ \\ &\sin(b−c)\sin(c−a)\sin(a−b)(\sin^2(b−c)+\sin^2(c−a)+\sin^2(a−b)) \end{align} \]

×

Problem Loading...

Note Loading...

Set Loading...