So unfamiliar part 4

Number Theory Level pending

\[x^6-x^5y^5+x^4y^6-x^6y^4-x^4+y^4-x^3+y^3-xy+x+y+y^6=0\]

Let all the integer pairs of \( (x,y)\) satisfy the equation above be \( A\) and the sum of all the integer pairs of \((x,y)\) is \(B\). Compute \[\left \lceil \frac{(A+B)^{A-B}}{AB} \right \rceil.\]

Note: The sum of all the pairs of (x;y) it's mean that if you get your answer is(2011,2012) and (2012,2013) the answer is 2011+2012+2012+2013=8048 and B=8048(Example)

×

Problem Loading...

Note Loading...

Set Loading...