Forgot password? New user? Sign up
Existing user? Log in
Let ak,bk,l∈ℜ+{ a }_{ k }, { b }_{ k }, l \in { \Re }^{ + }ak,bk,l∈ℜ+ and ak2+bk2=l2{ a }_{ k }^{ 2 }+{ b }_{ k }^{ 2 } = { l }^{ 2 }ak2+bk2=l2
E=akbkak2+bk2+(ak+bk)ak2+bk2E = \cfrac { { a }_{ k }{ b }_{ k } }{ { a }_{ k }^{ 2 }+{ b }_{ k }^{ 2 }+({ a }_{ k }+{ b }_{ k })\sqrt { { a }_{ k }^{ 2 }+{ b }_{ k }^{ 2 } } }E=ak2+bk2+(ak+bk)ak2+bk2akbk
Find maximum value of EEE
Problem Loading...
Note Loading...
Set Loading...