The three sequences, \( \{ a_n \}_{n=1}^{\infty } , \{ b_n \}_{n=1}^{\infty } \) and \( \{ c_n \}_{n=1}^{\infty } \), satisfy the following:

\( \displaystyle a_n \leq b_n \leq c_n \quad \forall n \in \mathbb{ N} \)

\( \displaystyle a_n + b_n + c_n = p(n) \) ; which is a polynomial.

\( \displaystyle a_n b_n c_n \) is a non zero constant \( \forall n \in \mathbb{ N}\).

\( \displaystyle a_n + \frac{1}{a_{n+1}} + b_n + \frac{1}{b_{n+1}} + c_n + \frac{1}{c_{n+1}} = 0 \quad \forall n \in \mathbb{ N}\).

\( \displaystyle {a_n}^3 + {b_n}^3 + {c_n}^3 = 8n^3 + 6n +1 \).

Evaluate: \( \displaystyle \lim_{n \to \infty } ( 38n a_n ) \)

×

Problem Loading...

Note Loading...

Set Loading...