Forgot password? New user? Sign up
Existing user? Log in
{Ω1=∫01sin−1(x1+x2)dxΩ2=∫01cos−1(x1+x2)dxΩ3=limn→∞(1n+1+1n+2+…+12n)\begin{cases} \Omega_1 = \displaystyle \int_0^1 \sin^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) \mathrm{d}x \\ \Omega_2 = \displaystyle \int_0^1 \cos^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) \mathrm{d}x \\ \Omega_3 = \displaystyle \lim_{n \to \infty} \left( \dfrac{1}{n+1} + \dfrac{1}{n+2} + \ldots + \dfrac{1}{2n} \right) \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧Ω1=∫01sin−1(1+x2x)dxΩ2=∫01cos−1(1+x2x)dxΩ3=n→∞lim(n+11+n+21+…+2n1)
Define Ω1,Ω2,Ω3\Omega_1, \Omega_2, \Omega_3Ω1,Ω2,Ω3 as of above. Then which one of the following choices is correct?
Problem Loading...
Note Loading...
Set Loading...