Level
pending

\[x = t - \sin(t), y = 1 - \cos(t) + 0.5\left|t\right|, \hspace{.2cm} -3\pi < t < 3\pi\]

\[x = t - \sin(t), y = 4.1 + 0.5\cos(t) + 0.33\left|t\right|, \hspace{.2cm} -3\pi < t < 3\pi\]

\[y = 0.5\left|x\right| + 6.2, \hspace{.2cm} -1 < x < 1 \]

\[y = 2x^4 + 4.7, \hspace{.2cm} -1 < x < 1\]

What creepy shape do the graphs of the equations above trace out? You might want to use a graphing tool for this one!

×

Problem Loading...

Note Loading...

Set Loading...