If

\[\large{f(x, y, z) = \ln(x^3+y^3+z^3-3xyz)}\]

Then

\(\Large{\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} f = -\frac{A}{(x+y+z)^{B}}}.\)

Find \(A+B.\)

**Note:** Expanding \(\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2}\) means to sum all nine possible second derivatives.

×

Problem Loading...

Note Loading...

Set Loading...