For every \(n\) let \(d(n)\) denote the number of positive divisors of \(n\).

Let \(f:N→N\) be a function such that

i. \(d(f(x))=x\) for all natural numbers \(x\)

ii\(.f(xy)\) divides \((x-1)y^{xy-1}f(x)\)

Find sum of all possible values of \(f(11)+f(315)\)

×

Problem Loading...

Note Loading...

Set Loading...