# Strange integral

**Calculus**Level 5

\[\begin{equation} \DeclareMathOperator*{sinc}{sinc\,} \large \int_{0}^{\infty} \prod\limits_{k=0}^{n}\sinc\left(\frac{x}{2k+1}\right)dx=\, \frac{π}{2} \end{equation}\]

Find the largest value of \(n\) which satisfies the above equation.

• \(n\) is a natural number.

• \(\begin{equation} \DeclareMathOperator*{sinc}{sinc\,} \sinc (x)=\frac{\sin x}{x}. \end{equation}\)