Strange integral

Calculus Level 5

0k=0nsinc(x2k+1)dx=π2\def\sinc{sinc\,} \large \int_{0}^{\infty} \prod\limits_{k=0}^{n}\sinc\left(\frac{x}{2k+1}\right)dx=\, \frac{\pi}{2}

Find the largest value of nn which satisfies the above equation.

nn is a natural number.

sinc(x)=sinxx.\def\sinc{sinc\,} \sinc (x)=\frac{\sin x}{x}.

×

Problem Loading...

Note Loading...

Set Loading...