Sufficiently long long division

Logic Level 3

\[ \LARGE{ \require{enclose} \begin{array}{rlll} \phantom{0}\ \boxed{\phantom{0}} \ \boxed{\phantom{0}} \ \boxed{\phantom{0}} && \\[-4pt] \boxed{\phantom0} \ \boxed{\phantom0}\ \enclose{longdiv}{\boxed{\phantom0} \ \boxed{\phantom0} \ \boxed{\phantom{0}} \ \boxed{\phantom0} } && \\[-4pt] \underline{\boxed6\ \boxed{\phantom0}\, \phantom0 \phantom0 \phantom0 \phantom0} && \\[-4pt] \boxed{\phantom0} \ \boxed{\phantom{0}} \phantom0 \, \, \phantom0 && \\[-3pt] \underline{\boxed{7} \ \boxed{\phantom{0}} \,\, \phantom0 \phantom0 } && \\[-3pt] \boxed{\phantom0} \ \boxed{\phantom0} && \\[-2pt] \underline{\boxed{8} \ \boxed{\phantom0}} && \\[-2pt] \boxed{9} \end{array} } \]

Above shows a long division. If the product of all the missing digits is non-zero, what is the sum of the values of all of the missing digits?


Inspiration.

×

Problem Loading...

Note Loading...

Set Loading...