\[\large \sum _{ x=1 }^{ \infty }{ \dfrac { \psi ( x ) }{ { x }^{ 2 } } } =\zeta ( A ) -\dfrac { \gamma { \pi }^{ B } }{ C } \]

If the equation above holds true for integers \(A,B\) and \(C\), find \(A+B+C\).

**Notation**: \( \psi(\cdot) \) denotes the Digamma function.

×

Problem Loading...

Note Loading...

Set Loading...