Forgot password? New user? Sign up
Existing user? Log in
limn→∞∑r=1n21rsin(2017r2n2)\large \lim_{n\to \infty} \sum_{r=1}^{n^2} \frac 1r \sin \left(\frac{2017 r^2}{n^2}\right) n→∞limr=1∑n2r1sin(n22017r2)
If the value of the limit above is aπb\dfrac{a \pi}{b}baπ, where aaa and bbb are coprime positive integers, then what is a+b?a + b?a+b?
Problem Loading...
Note Loading...
Set Loading...