\[\sum_{i=1}^{20} \frac{ i^5 + i^3} { i^4 + i^2 + 1 } = \dfrac{1^5 + 1^3}{1^{4} + 1^{2} + 1} + \dfrac{2^5 + 2^3}{2^{4} + 2^{2} + 1} + \dfrac{3^5+3^3}{3^{4} + 3^{2} + 1} + \dfrac{4^5+4^3}{4^{4} + 4^{2} + 1} +...\]

The above 20 term summation can be expressed as \(\frac{A}{B}\), for \( A, B \) are coprime integers. Find \( A + B\).

×

Problem Loading...

Note Loading...

Set Loading...