Let \( f\) and \(g\) be transcendental functions, such that

\( f(x) \neq - g(x) \)

\( \displaystyle\sum\limits_{k=1}^{\infty} f(k) \) diverges

\( \displaystyle\sum\limits_{j=1}^{\infty} g(j) \) diverges as well.

Must \( \displaystyle\sum\limits_{m=1}^{\infty} (f-g)(m) \) converge?

×

Problem Loading...

Note Loading...

Set Loading...