Forgot password? New user? Sign up
Existing user? Log in
a!b!=a!+b!+c2\displaystyle \large a!b! = a! + b! + c^2a!b!=a!+b!+c2
Positive integers aaa, bbb, and ccc, with a>ba > ba>b, are the unique solution to the equation above.
If abc=mn\dfrac {a^b}{c} = \dfrac mncab=nm for coprime positive integers mmm and nnn, find m+nm + nm+n.
Problem Loading...
Note Loading...
Set Loading...