\[\large f(x)=\left (2^{x}+\frac{1}{2^{x}}\right)\left (x^{2}+\frac{1}{x^{2}} \right)\]

If \(x \in \mathbb{R}\), then what is the minimum value of \(\lceil f(x) \rceil \)?

**Notation:** \(\lceil \cdot \rceil\) denotes the ceiling function.

×

Problem Loading...

Note Loading...

Set Loading...