# Sweet integral

**Calculus**Level pending

\(\int { tan^{ 1/3 }\left( x \right) .dx=-\frac { 1 }{ a } \ln { |1+p| } +\frac { 1 }{ b } \ln { |1+{ p }^{ 2 } } -p|+\frac { c }{ d\sqrt { e } } \arctan { \frac { 2p-1 }{ \sqrt { 3 } } } +k }\) where p=\(\tan ^{ 2/3 }{ x }\) and k is some arbitrary constant. Find a+b+c+d+e?