Forgot password? New user? Sign up
Existing user? Log in
Given the following system of equations:
x+y+z=1x2+y2+z2=2x3+y3+z3=3,\begin{aligned} x + y + z &= 1\\ x^{2} + y^{2} + z^{2} &= 2\\ x^{3} + y^{3} + z^{3} &= 3, \end{aligned}x+y+zx2+y2+z2x3+y3+z3=1=2=3,
find the smallest positive integer value of n (>3)n ~(> 3)n (>3) such that xn+yn+znx^{n} + y^{n} + z^{n}xn+yn+zn is an integer.
Problem Loading...
Note Loading...
Set Loading...