\[\large \sum_{n=2}^\infty \zeta(n)z^n=-\int_0^1 az\dfrac{x^{-z+b}-c}{x^{b+1}-c} \, dx\]

The equation above holds true for \( |z| < 1\) and integer constants \(a,b\) and \(c\).

Find the value of \(a+b+c\).

**Notation**: \(\zeta(\cdot) \) denotes the Riemann zeta function.

×

Problem Loading...

Note Loading...

Set Loading...