Chebychev and/or Markov

Let \(X\) be a random variable with a finite expected value \(\mu = E(X)\) and a finite variance \(\text { Var (X) } = \sigma^2 > 0\). Then the probability \(P (\mu -3\sigma < X < \mu + 3\sigma) \ge \frac{a}{b}\) with absolute certainty. Find this maximum value \(\frac{a}{b}\) with \(a, b\) coprime positive integers. Submit \(a + b\).

×

Problem Loading...

Note Loading...

Set Loading...