Let \[P_6 [-1, 1] = \{p : [-1,1] \longrightarrow \mathbb{R}; \space \text{ p is a monic polynomial of degree 6 with coefficients in } \mathbb{R}\},\] and if \(p \in P_6 [-1, 1]\), let's define \[|| p ||_{\infty} = \text{ maximum } \{ |p(t)| \text{ such that } \space t\in [-1, 1] \space \} \]. Due to Weierstrass extrem value theorem this maximum exits.

**Example.-**

\(|| p(t) = t^6 ||_{\infty} = 1\)

Find \[\displaystyle \min_{p \in P_6 [-1, 1]} || p ||_{\infty}\] ,i.e, Minimize \(|| p ||_{\infty}\) such that \(p \in P_6 [-1, 1]\). Give the exact answer.

×

Problem Loading...

Note Loading...

Set Loading...