New user? Sign up

Existing user? Sign in

If \(T_{n} = 1 + 2 + 3 + \dots + n\), then \(P_n = \frac{T_2}{T_2 - 1} \cdot \frac{T_3}{T_3 - 1} \cdot \frac{T_4}{T_4 - 1} \dotsm \frac{T_n}{T_n - 1}\) for \(n = 2, 3, 4, \dots\), then \(P_{1991}\) is closest to what positive integer?

Problem Loading...

Note Loading...

Set Loading...