Tetrahedral Volume Sum

Geometry Level 5

Consider a tetrahedron with side lengths \(2, 3, 3, 4, 5, 5\). The largest possible volume of this tetrahedron has the form \( \frac {a \sqrt{b}}{c}\), where \(b\) is an integer that's not divisible by the square of any prime, \(a\) and \(c\) are positive, coprime integers. What is the value of \(a+b+c\)?

×

Problem Loading...

Note Loading...

Set Loading...