\(\begin{eqnarray} S_{1}&=&\sqrt[22]{1887}+\sqrt[22]{1888}+\cdots+\sqrt[22]{2013}+\sqrt[22]{2014} \\ \\ \ S_{2}&=&\sqrt[22]{1888}+\sqrt[22]{1889}+\cdots+\sqrt[22]{2014}+\sqrt[22]{2015} \\ \\ I&=&\int_{1887}^{2015}\!\sqrt[22]{x}\,\mathrm{d}x \end{eqnarray} \)

What can you say about the relative values of \(S_{1}\), \(S_{2}\), and \(I\)?

×

Problem Loading...

Note Loading...

Set Loading...