Forgot password? New user? Sign up
Existing user? Log in
{(x1−x2)2+(y1−y2)2=9(x2−x3)2+(y2−y3)2=16(x1−x3)2+(y1−y3)2=25\begin{cases} (x_1-x_2)^2+(y_1-y_2)^2=9 \\ (x_2-x_3)^2+(y_2-y_3)^2=16 \\ (x_1-x_3)^2+(y_1-y_3)^2=25 \end{cases}⎩⎪⎨⎪⎧(x1−x2)2+(y1−y2)2=9(x2−x3)2+(y2−y3)2=16(x1−x3)2+(y1−y3)2=25
If above 3 conditions hold simultaneously,
then find the value of ∣x1y11x2y21x3y31∣2\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2∣∣∣∣∣∣x1x2x3y1y2y3111∣∣∣∣∣∣2
Problem Loading...
Note Loading...
Set Loading...