\[\large S = \sum_{x = 2}^{2017} \sum_{y = 1}^{x - 1} \sum_{z = 0}^{y - 1} \left \lfloor \frac{2017y + xz}{xy} \right \rfloor \]

For \(S\) as defined above, find \(\left \lfloor \sqrt{S} \right \rfloor\).

**Notation:** \(\lfloor \cdot \rfloor\) denotes the floor function.

**This problem is part of the set "Xenophobia"**

×

Problem Loading...

Note Loading...

Set Loading...