\[\large f_a(x,y)=ax^2+4ay^2+20xy+3x+6y+7\]

Find the smallest value of the parameter \(a\) such that \(f_a(x,y)\) attains a global minimum.

Enter 666 if you come to the conclusion that no such smallest value of \(a\) exists.

×

Problem Loading...

Note Loading...

Set Loading...