The longest imaginable

Calculus Level 4

Evaluate \[ \lim_{n \to \infty} \displaystyle \int_0^1 \int_0^1 \ldots \int_0^1 \dfrac{n}{x_1+x_2+\dots+x_n}\, dx_1 dx_2 \ldots dx_n. \]

Clarification: In the answer options, \(e \, (\approx 2.71828)\) is the Euler's number.


Note: This problem is a generalization of my previous problem.
×

Problem Loading...

Note Loading...

Set Loading...