Forgot password? New user? Sign up
Existing user? Log in
Evaluate limn→∞∫01∫01…∫01nx1+x2+⋯+xn dx1dx2…dxn. \lim_{n \to \infty} \displaystyle \int_0^1 \int_0^1 \ldots \int_0^1 \dfrac{n}{x_1+x_2+\dots+x_n}\, dx_1 dx_2 \ldots dx_n. n→∞lim∫01∫01…∫01x1+x2+⋯+xnndx1dx2…dxn.
Clarification: In the answer options, e (≈2.71828)e \, (\approx 2.71828)e(≈2.71828) is the Euler's number.
Problem Loading...
Note Loading...
Set Loading...