Forgot password? New user? Sign up

Existing user? Log in

Evaluate $\lim_{n \to \infty} \displaystyle \int_0^1 \int_0^1 \ldots \int_0^1 \dfrac{n}{x_1+x_2+\dots+x_n}\, dx_1 dx_2 \ldots dx_n.$

Clarification: In the answer options, $e \, (\approx 2.71828)$ is the Euler's number.

Problem Loading...

Note Loading...

Set Loading...