# The most difficult problem that no one can solve! :)

**Calculus**Level 4

Let \(s=\sigma+it\in C\) and \(\sigma>1\). Define \(\zeta(s)=\sum_{n=1}^\infty\frac{1}{n^{s}}\).

Evaluate \(\lim_{s \rightarrow 1}(1-s) \frac{\zeta'(s)}{\zeta(s)}\).

Let \(s=\sigma+it\in C\) and \(\sigma>1\). Define \(\zeta(s)=\sum_{n=1}^\infty\frac{1}{n^{s}}\).

Evaluate \(\lim_{s \rightarrow 1}(1-s) \frac{\zeta'(s)}{\zeta(s)}\).

×

Problem Loading...

Note Loading...

Set Loading...