\[\large N = \color{red}{1!} \cdot \color{orange}{2!} \cdot \color{yellow}{3!} \cdot \color{green}{4!} \cdot \color{blue}{5!} \cdots \color{magenta}{2015!} \cdot \color{purple}{2016!} \cdot \color{black}{2017!}\]

How many trailing number of zeros does \(N\) have?

\(\)

**Notation:** \(!\) is the factorial notation. For example, \(8! = 1\times2\times3\times\cdots\times8 \).

×

Problem Loading...

Note Loading...

Set Loading...