Forgot password? New user? Sign up

Existing user? Log in

$\displaystyle I(r,n)=\int _{ -\infty }^{ 0 }{ { x }^{ r }{ e }^{ nx } \text{ d}x }$ where $r,n \in \mathbb{Z}$.

$\displaystyle X= \sum_{n=1}^{\infty } \sum_{r=0}^{\infty } \frac{1}{I(r,n)}$

Find $\left\lfloor { 10 }^{ 4 }X \right\rfloor$

Problem Loading...

Note Loading...

Set Loading...