Forgot password? New user? Sign up
Existing user? Log in
x3+y33+xy=2007\large \dfrac {x^3+y^3}{3}+xy = 20073x3+y3+xy=2007
Let there be nnn unordered positive integral solutions to the above equation. Call these solutions (x1,y1),(x2,y2),…,(xn,yn)(x_1, y_1), (x_2, y_2) , \ldots, (x_n, y_n)(x1,y1),(x2,y2),…,(xn,yn). Find the value of
∑i=1nxiyi.\displaystyle \sum_{i=1}^n x_i y_i. i=1∑nxiyi.
Problem Loading...
Note Loading...
Set Loading...