Forgot password? New user? Sign up
Existing user? Log in
Let (x1,y1),(x2,y2),…,(xn,yn)(x_1, y_1), (x_2, y_2), \dots, (x_n , y_n)(x1,y1),(x2,y2),…,(xn,yn) be the real solutions to the system of equations
x+3x−yx2+y2=3y−x+3yx2+y2=0x+\dfrac{3x-y}{x^2 + y^2} =3 \\ y- \dfrac{x+3y}{x^2 + y^2}=0x+x2+y23x−y=3y−x2+y2x+3y=0
Evaluate: ∑i=1nxi+yi\displaystyle \sum_{i=1}^{n} x_i + y_ii=1∑nxi+yi
Problem Loading...
Note Loading...
Set Loading...