Given that \[\displaystyle \large \sum _{a=0}^{\infty }\sum _{b=0}^{ \infty}\sum _{c=0}^{\infty }\frac{a^bb^c}{a!\times b!\times c!}=A\] Find \(\left\lfloor A \right\rfloor \).

For the purpose of this question, assume \(0^0=1\)

×

Problem Loading...

Note Loading...

Set Loading...