Forgot password? New user? Sign up
Existing user? Log in
{x3+3x2+2019x+2017=sin2θ−12y3+3y2+2019y+2017=cos2θ−12\begin{cases} x^3+3x^2+2019x+2017=\sin^2\theta - \frac{1}{2} \\ y^3+3y^2+2019y+2017=\cos^2\theta - \frac{1}{2} \end{cases} {x3+3x2+2019x+2017=sin2θ−21y3+3y2+2019y+2017=cos2θ−21
Given that xxx, yyy and θ\thetaθ (measured in radians) are real numbers satisfying the system of equations above, find the value of x+yx+yx+y.
Problem Loading...
Note Loading...
Set Loading...