$\begin{cases} x^3+3x^2+2019x+2017=\sin^2\theta - \frac{1}{2} \\ y^3+3y^2+2019y+2017=\cos^2\theta - \frac{1}{2} \end{cases}$

Given that $x$, $y$ and $\theta$ (measured in radians) are real numbers satisfying the system of equations above, find the value of $x+y$.

×

Problem Loading...

Note Loading...

Set Loading...