This works - I don't know why

Let \(a_0, a_1, \cdots, a_7\) be any \(8\) distinct integers. Let \(P\) be the product of their pairwise differences, that is:

\[P = \prod _ {i < j} {(a_i - a_j)} \]

What is the greatest integer which always divides \(P?\)

×

Problem Loading...

Note Loading...

Set Loading...