Forgot password? New user? Sign up
Existing user? Log in
Let TTT be the nonnegative integer sequence defined by T0=0T1=1T2=1Tn=Tn−1+Tn−2+ Tn−3 (for n≥3).\begin{aligned} T_0 &= 0 \\ T_1 &= 1 \\ T_2 &= 1 \\ T_n &= T_{n-1} + T_{n-2} +\ T_{n-3}\ \ (\text{for }n \geq 3). \end{aligned} T0T1T2Tn=0=1=1=Tn−1+Tn−2+ Tn−3 (for n≥3). Also let Q=limn→∞TnTn−1.Q = \lim_{n\to\infty}\frac{T_n}{T_{n-1}}.Q=n→∞limTn−1Tn. Find the value of Q3−Q2−Q.Q^3 - Q^2 - Q.Q3−Q2−Q.
Problem Loading...
Note Loading...
Set Loading...