If \(\lfloor 2 \cos x \rfloor + \lfloor \sin x \rfloor =-3\) for \(x \in [0, 2 \pi]\), then the range of the function \(f(x)= \sin x+\sqrt 3 \cos x\) can be written as \([a, b] \). Find \(a^2 + b^2\).

\[\]

**Notation:** \(\lfloor \cdot \rfloor\) denotes the floor function.

×

Problem Loading...

Note Loading...

Set Loading...