Forgot password? New user? Sign up
Existing user? Log in
1a3+1+1b3+1+1c3+1.\dfrac{1}{\sqrt{a^3+1}}+\dfrac{1}{\sqrt{b^3+1}}+\dfrac{1}{\sqrt{c^3+1}}. a3+11+b3+11+c3+11.
Positive reals a, b, ca,\ b,\ ca, b, c satisfy 1a+1b+1c=3.\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3.a1+b1+c1=3.
If the maximum value of the above expression is in the form xy\dfrac{x}{\sqrt y}yx, where xxx and yyy are integers with yyy square-free, find x+yx+yx+y.
Problem Loading...
Note Loading...
Set Loading...