Forgot password? New user? Sign up
Existing user? Log in
∫0∞1x12+1dx=π(a+b)c \large \displaystyle \int_0^\infty \frac {1}{x^{12} + 1} \mathrm{d}x = \frac{ \pi (\sqrt{a} + \sqrt{b} )}{c} ∫0∞x12+11dx=cπ(a+b)
If the equation above is satisfied for positive integers a,ba,ba,b and ccc, what is the smallest value of a+b+ca+b+ca+b+c?
Problem Loading...
Note Loading...
Set Loading...