Forgot password? New user? Sign up
Existing user? Log in
Given that f(x)=sinxf(x)=\sin xf(x)=sinx and g(x)=x/10g(x)=x/10g(x)=x/10. If x1,x2,...,xnx_{1},x_{2},...,x_{n}x1,x2,...,xn are the values of xxx for which f(x)=g(x)f(x)=g(x)f(x)=g(x), then find the maximum possible value of ⌊x1⌋−⌊x2⌋+⌊x3⌋−⌊x4⌋+⋯±⌊xn⌋−1n−1.\dfrac {\left\lfloor x_{1}\right\rfloor- \left\lfloor x_{2}\right\rfloor+\left\lfloor x_{3}\right\rfloor-\left\lfloor x_{4}\right\rfloor+\cdots\pm \left\lfloor x_{n}\right\rfloor-1}{n-1}.n−1⌊x1⌋−⌊x2⌋+⌊x3⌋−⌊x4⌋+⋯±⌊xn⌋−1.
Details and Assumptions
Problem Loading...
Note Loading...
Set Loading...