Forgot password? New user? Sign up
Existing user? Log in
If a,ba, ba,b and ccc are non-zero real numbers, that satisfy the equations a2+b2+c2=1 a^2 + b^2 + c^2 = 1a2+b2+c2=1 and a(1b+1c)+b(1c+1a)+c(1a+1b)=−3a\left(\frac {1}{b} + \frac {1}{c}\right) + b\left(\frac {1}{c} + \frac {1}{a}\right) + c\left( \frac {1}{a} + \frac {1}{b}\right) = -3 a(b1+c1)+b(c1+a1)+c(a1+b1)=−3, how many possible values are there for a+b+ca + b + ca+b+c?
Problem Loading...
Note Loading...
Set Loading...