Two Symmetric Equations

Algebra Level 4

If \(a, b\) and \(c\) are non-zero real numbers, that satisfy the equations \( a^2 + b^2 + c^2 = 1\) and \(a\left(\frac {1}{b} + \frac {1}{c}\right) + b\left(\frac {1}{c} + \frac {1}{a}\right) + c\left( \frac {1}{a} + \frac {1}{b}\right) = -3 \), how many possible values are there for \(a + b + c\)?

×

Problem Loading...

Note Loading...

Set Loading...