Forgot password? New user? Sign up
Existing user? Log in
∫ln(x)ln(x)[ln(x)(ln(ln(x))+1)+1]x dx{ \displaystyle \int \dfrac{\ln(x)^{\ln(x)}\left [\ln(x)\left (\ln(\ln(x))+1 \right )+1\right]}{x} \, dx}∫xln(x)ln(x)[ln(x)(ln(ln(x))+1)+1]dx
Ignoring the constant of integration, if the integral above can be expressed as (f(x))f(x)+1{(f(x))^{f(x)+1}}(f(x))f(x)+1, then find the value of f(e)f(e)f(e).
Problem Loading...
Note Loading...
Set Loading...