Forgot password? New user? Sign up
Existing user? Log in
If kkk is an integer that satisfies the identity (∑i=1nF2i−1)2−(2∑i=1nF2i−12)=(∑i=12n−2(−1)iFi2)−k\left(\sum_{i=1}^{n}F_{2i-1}\right)^2-\left(2\sum_{i=1}^{n}F_{2i-1}^2\right)=\left(\sum_{i=1}^{2n-2}(-1)^iF_i^2\right)-k(i=1∑nF2i−1)2−(2i=1∑nF2i−12)=(i=1∑2n−2(−1)iFi2)−k then find kkk.
Details and Assumptions\text{Details and Assumptions}Details and Assumptions
F1=F2=1F_1=F_2=1F1=F2=1, and Fn=Fn−1+Fn−2F_n=F_{n-1}+F_{n-2}Fn=Fn−1+Fn−2.
[You should assume that n≥2 n \geq 2 n≥2 for the summations to make sense.]
Problem Loading...
Note Loading...
Set Loading...