Forgot password? New user? Sign up
Existing user? Log in
If fff is a continuous function and f(xy)=f(x)+f(y)f(xy)=f(x)+f(y)f(xy)=f(x)+f(y) for all x,y∈R−{0}x,y\in \mathbb{R-\{0\}}x,y∈R−{0}, find the value of f(8)f(2)\dfrac{f(8)}{f(2)}f(2)f(8).
Bonus: Find the general form of f(x)f(x)f(x) if f(10)=123456789f(10) = 123456789f(10)=123456789.
Problem Loading...
Note Loading...
Set Loading...