Forgot password? New user? Sign up
Existing user? Log in
2017x3+2016x2+2015x+2016=0\large 2017x^3+2016x^2+2015x+2016=02017x3+2016x2+2015x+2016=0
Let α\alphaα , β\betaβ and γ\gammaγ be the roots of the equation above .
Find the value of :
2017(α3−β3−γ3)+2016(α2−β2−γ2)+2015(α−β−γ)α4β3γ3+α3β4γ3+α3β3γ44\large \dfrac{2017(\alpha^3-\beta^3-\gamma^3)+2016(\alpha^2-\beta^2-\gamma^2)+2015(\alpha-\beta-\gamma)}{\sqrt[4]{\alpha^4\beta^3\gamma^3+\alpha^3\beta^4\gamma^3+\alpha^3\beta^3\gamma^4}}4α4β3γ3+α3β4γ3+α3β3γ42017(α3−β3−γ3)+2016(α2−β2−γ2)+2015(α−β−γ)
Problem Loading...
Note Loading...
Set Loading...